Characterization of Risk: A Sharp Law of Large Numbers

نویسندگان

  • Peter J Hammond
  • Yeneng Sun
  • Peter J. Hammond
چکیده

An extensive literature in economics uses a continuum of random variables to model individual random shocks imposed on a large population. Let H denote the Hilbert space of square-integrable random variables. A key concern is to characterize the family of all H-valued functions that satisfy the law of large numbers when a large sample of agents is drawn at random. We use the iterative extension of an infinite product measure introduced in [6] to formulate a “sharp” law of large numbers. We prove that an H-valued function satisfies this law if and only if it is both Pettis-integrable and norm integrably bounded. ∗Department of Economics, University of Warwick, Coventry CV4 7AL, U.K. e-mail: [email protected] †Department of Economics, National University of Singapore, 1 Arts Link, Singapore 117570. e-mail: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on the Strong Law of Large Numbers

Petrov (1996) proved the connection between general moment conditions and the applicability of the strong law of large numbers to a sequence of pairwise independent and identically distributed random variables. This note examines this connection to a sequence of pairwise negative quadrant dependent (NQD) and identically distributed random variables. As a consequence of the main theorem ...

متن کامل

MARCINKIEWICZ-TYPE STRONG LAW OF LARGE NUMBERS FOR DOUBLE ARRAYS OF NEGATIVELY DEPENDENT RANDOM VARIABLES

In the following work we present a proof for the strong law of large numbers for pairwise negatively dependent random variables which relaxes the usual assumption of pairwise independence. Let be a double sequence of pairwise negatively dependent random variables. If for all non-negative real numbers t and , for 1 < p < 2, then we prove that (1). In addition, it also converges to 0 in ....

متن کامل

On the Convergence Rate of the Law of Large Numbers for Sums of Dependent Random Variables

In this paper, we generalize some results of Chandra and Goswami [4] for pairwise negatively dependent random variables (henceforth r.v.’s). Furthermore, we give Baum and Katz’s [1] type results on estimate for the rate of convergence in these laws.

متن کامل

SOME PROBABILISTIC INEQUALITIES FOR FUZZY RANDOM VARIABLES

In this paper, the concepts of positive dependence and linearlypositive quadrant dependence are introduced for fuzzy random variables. Also,an inequality is obtained for partial sums of linearly positive quadrant depen-dent fuzzy random variables. Moreover, a weak law of large numbers is estab-lished for linearly positive quadrant dependent fuzzy random variables. Weextend some well known inequ...

متن کامل

Application of Benford’s Law in Analyzing Geotechnical Data

Benford’s law predicts the frequency of the first digit of numbers met in a wide range of naturally occurring phenomena. In data sets, following Benford’s law, numbers are started with a small leading digit more often than those with a large leading digit. This law can be used as a tool for detecting fraud and abnormally in the number sets and any fabricated number sets. This can be used as an ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007